Monday, June 28, 2010

Phases of The Moon

The Moon is a cold, rocky body about 2,160 miles (3,476 km) in diameter. It has no light of its own but shines by sunlight reflected from its surface. The Moon orbits Earth about once every 29 and a half days. As it circles our planet, the changing position of the Moon with respect to the Sun causes our natural satellite to cycle through a series of phases:

+ New Moon > New Crescent > First Quarter > Waxing Gibbous > Full Moon >
Waning Gibbous > Last Quarter > Old Crescent > New Moon (again)

The phase known as New Moon can not actually be seen because the illuminated side of the Moon is then pointed away from Earth. The rest of the phases are familiar to all of us as the Moon cycles through them month after month. Did you realize that the word month is derived from the Moon's 29.5 day period?

To many early civilizations, the Moon's monthly cycle was an important tool for measuring the passage of time. In fact many calendars are synchronized to the phases of the Moon. The Hebrew, Muslem and Chinese calendars are all lunar calendars. The New Moon phase is uniquely recognized as the beginning of each calendar month just as it is the beginning on the Moon's monthly cycle. When the Moon is New, it rises and sets with the Sun because it lies very close to the Sun in the sky. Although we cannot see the Moon during New Moon phase, it has a very special significance with regard to eclipses.


The Moon's Two Shadows

An eclipse of the Sun (or solar eclipse) can only occur at New Moon when the Moon passes between Earth and Sun. If the Moon's shadow happens to fall upon Earth's surface at that time, we see some portion of the Sun's disk covered or 'eclipsed' by the Moon. Since New Moon occurs every 29 1/2 days, you might think that we should have a solar eclipse about once a month. Unfortunately, this doesn't happen because the Moon's orbit around Earth is tilted 5 degrees to Earth's orbit around the Sun. As a result, the Moon's shadow usually misses Earth as it passes above or below our planet at New Moon. At least twice a year, the geometry lines up just right so that some part of the Moon's shadow falls on Earth's surface and an eclipse of the Sun is seen from that region.

The Moon's shadow actually has two parts:

1. Penumbra
+ The Moon's faint outer shadow.
+ Partial solar eclipses are visible from within the penumbral shadow.
2. Umbra
+ The Moon's dark inner shadow.
+ Total solar eclipses are visible from within the umbral shadow.

When the Moon's penumbral shadow strikes Earth, we see a partial eclipse of the Sun from that region. Partial eclipses are dangerous to look at because the un-eclipsed part of the Sun is still very bright. You must use special filters or a home-made pinhole projector to safely watch a partial eclipse of the Sun (see: Observing Solar Eclipses Safely).

What is the difference between a solar eclipse and a lunar eclipse? A lunar eclipse is an eclipse of the Moon rather than the Sun. It happens when the Moon passes through Earth's shadow. This is only possible when the Moon is in the Full Moon phase. For more information, see Lunar Eclipses for Beginners.




Total Solar Eclipses and the Path of Totality

If the Moon's inner or umbral shadow sweeps across Earth's surface, then a total eclipse of the Sun is seen. The track of the Moon's umbral shadow across Earth is called the Path of Totality. It is typically 10,000 miles long but only about 100 miles wide. It covers less than 1% of Earth's entire surface area. In order to see the Sun become completely eclipsed by the Moon, you must be somewhere inside the narrow path of totality.

The path of a total eclipse can cross any part of Earth. Even the North and South Poles get a total eclipse sooner or later. Just one total eclipse occurs each year or two. Since each total eclipse is only visible from a very narrow track, it is rare to see one from any single location. You'd have to wait an average of 375 years to see two total eclipses from one place. Of course, the interval between seeing two eclipses from one particular place can be shorter or longer. For instance, the last total eclipse visible from Princeton, NJ was in 1478 and the next is in 2079. That's an interval of 601 years. However, the following total eclipse from Princeton is in 2144, after a period of only 65 years.



Awesome Totality

The total phase of a solar eclipse is very brief. It rarely lasts more than several minutes. Nevertheless, it is considered to be one of the most awe inspiring spectacles in all of nature. The sky takes on an eerie twilight as the Sun's bright face is replaced by the black disk of the Moon. Surrounding the Moon is a beautiful gossemer halo. This is the Sun's spectacular solar corona, a super heated plasma two million degrees in temperature. The corona can only be seen during the few brief minutes of totality. To witness such an event is a singularly memorable experience which cannot be conveyed adequately through words or photographs. Nevertheless, you can read more about the Experience of Totality in the first chapter of Totality - Eclipses of the Sun.


Annular Solar Eclipses

Unfortunately, not every eclipse of the Sun is a total eclipse. Sometimes, the Moon is too small to cover the entire Sun's disk. To understand why, we need to talk about the Moon's orbit around Earth. That orbit is not perfectly round but is oval or elliptical in shape. As the Moon orbits our planet, it's distance varies from about 221,000 to 252,000 miles. This 13% variation in the Moon's distance makes the Moon's apparent size in our sky vary by the same amount. When the Moon is on the near side of its orbit, the Moon appears larger than the Sun. If an eclipse occurs at that time, it will be a total eclipse. However, if an eclipse occurs while the Moon is on the far side of its orbit, the Moon appears smaller than the Sun and can't completely cover it. Looking down from space, we would see that the Moon's umbral shadow is not long enough to reach Earth. Instead, the antumbra shadow reaches Earth.

The track of the antumbra is called the path of annularity. If you are within this path, you will see an eclipse where a ring or annulus of bright sunlight surrounds the Moon at the maximum phase. Annular eclipses are also dangerous to look directly with the naked eye. You must use the same precautions needed for safely viewing a partial eclipse of the Sun (see: Observing Solar Eclipses Safely).

Annularity
can last as long as a dozen minutes, but is more typically about half that length. Since the annular phase is so bright, the Sun's gorgeous corona remains hidden from view. But annular eclipses are still quite interesting to watch. You can read reports about the annular eclipses of 1999 in Australia and 2003 in Iceland. More recently, visit the 2005 Annular Solar Eclipse Photo Gallery.

The "Oddball" Hybrid Eclipse


There's one more type of solar eclipse to mention and its a real oddball. Under rare circumstances, a total eclipse can change to an annular eclipse or vice versa along different sections of the eclipse path. This happens when the curvature of Earth brings different points of the path into the umbral (total) and antumbral (annular) shadows, respectively. Hybrid eclipses are sometimes called annular/total eclipses. The last hybrid eclipse was in 2005 and the next one is in 2013.

Solar Eclipse Frequency and Future Eclipses

During the five thousand year period 2000 BCE to 3000 CE, planet Earth experiences 11,898 solar eclipses as follows:


Scientists welcome the total eclipse as a rare opportunity to study the Sun's faint corona. Why is the corona so hot? What causes it to spew massive bubbles of plasma into space through coronal mass ejections? Can solar flares be predicted and what causes them? These major mysteries may eventually be solved through experiments performed at future total eclipses.

For amateur astronomers and eclipse chasers, an eclipse of the Sun presents a tempting target to photograph. Fortunately, Solar Eclipse Photography is easy provided that you have the right equipment and use it correctly. See MrEclipse's Picks for camera, lens and tripod recommendations. For more photographs taken during previous lunar eclipses, be sure to visit Solar Eclipse Photo Gallery. It's also possible to capture a solar eclipse using a video camcorder.

The most recent total solar eclipse occurred on March 29, 2006 and was visible from Africa and central Asia. Fred Espenak led a Spears Travel tour to Libya to witness the event. You can see a collection of his photographs at 2006 Eclipse Gallary. Reports (with photos) from some of his earlier eclipse expeditions include 2001 Eclipse in Zambia, 1999 Eclipse in Turkey, 1998 Eclipse in Aruba and 1995 Eclipse in India.

The next two total eclipse of the Sun are both visible from China: 2008 and 2009. Join Fred Espenak on a Spears Travel tour to witness one (or both!) of these spectacular events.






Eclipse conditions


Eclipses may occur when the Earth and the Moon are aligned with the Sun, and the shadow of one body cast by the Sun falls on the other. So at new moon (or rather Dark Moon), when the Moon is in conjunction with the Sun, the Moon may pass in front of the Sun as seen from a narrow region on the surface of the Earth and cause a solar eclipse. At full moon, when the Moon is in opposition to the Sun, the Moon may pass through the shadow of the Earth, and a lunar eclipse is visible from the night half of the Earth.

Note: Conjunction and opposition of the Moon together have a special name: syzygy (from Greek for "junction"), because of the importance of these lunar phases.

An eclipse does not happen at every new or full moon, because the plane of the orbit of the Moon around the Earth is tilted with respect to the plane of the orbit of the Earth around the Sun (the ecliptic): so as seen from the Earth, when the Moon is nearest to the Sun (new moon) or at largest distance (full moon), the three bodies usually are not exactly on the same line.

This inclination is on average about:





A lunar eclipse occurs when the moon passes behind the earth such that the earth blocks the sun’s rays from striking the moon. This can occur only when the Sun, Earth and Moon are aligned exactly, or very closely so, with the Earth in the middle. Hence, there is always a full moon the night of a lunar eclipse. The type and length of an eclipse depend upon the Moon’s location relative to its orbital nodes. The next total lunar eclipse will occur on December 21, 2010. Unlike a solar eclipse, which can only be viewed from a certain relatively small area of the world, a lunar eclipse may be viewed from anywhere on the night side of the Earth. A lunar eclipse lasts for a few hours, whereas a total solar eclipse lasts for only a few minutes at any given place. Some lunar eclipses have been associated with important historical events.



Types of lunar eclipses

A penumbral eclipse occurs when the Moon passes through the Earth’s penumbra. The penumbra causes a subtle darkening of the Moon's surface. A special type of penumbral eclipse is a total penumbral eclipse, during which the Moon lies exclusively within the Earth’s penumbra. Total penumbral eclipses are rare, and when these occur, that portion of the Moon which is closest to the umbra can appear somewhat darker than the rest of the Moon.

A partial lunar eclipse occurs when only a portion of the Moon enters the umbra. When the Moon travels completely into the Earth’s umbra, one observes a total lunar eclipse. The Moon’s speed through the shadow is about one kilometer per second (2,300 mph), and totality may last up to nearly 107 minutes. Nevertheless, the total time between the Moon’s first and last contact with the shadow is much longer, and could last up to 3.8 hours.[1] The relative distance of the Moon from the Earth at the time of an eclipse can affect the eclipse’s duration. In particular, when the Moon is near its apogee, the farthest point from the Earth in its orbit, its orbital speed is the slowest. The diameter of the umbra does not decrease much with distance. Thus, a totally eclipsed Moon occurring near apogee will lengthen the duration of totality.

A selenelion or selenehelion occurs when both the Sun and the eclipsed Moon can be observed at the same time. This can only happen just before sunset or just after sunrise, and both bodies will appear just above the horizon at nearly opposite points in the sky. This arrangement has led to the phenomenon being referred to as a horizontal eclipse. It happens during every lunar eclipse at all those places on the Earth where it is sunrise or sunset at the time. Indeed, the reddened light that reaches the Moon comes from all the simultaneous sunrises and sunsets on the Earth. Although the Moon is in the Earth’s geometrical shadow, the Sun and the eclipsed Moon can appear in the sky at the same time because the refraction of light through the Earth’s atmosphere causes objects near the horizon to appear higher in the sky than their true geometric position.



The Moon does not completely disappear as it passes through the umbra because of the refraction of sunlight by the Earth’s atmosphere into the shadow cone; if the Earth had no atmosphere, the Moon would be completely dark during an eclipse. The red coloring arises because sunlight reaching the Moon must pass through a long and dense layer of the Earth’s atmosphere, where it is scattered. Shorter wavelengths are more likely to be scattered by the small particles, and so by the time the light has passed through the atmosphere, the longer wavelengths dominate. This resulting light we perceive as red. This is the same effect that causes sunsets and sunrises to turn the sky a reddish color; an alternative way of considering the problem is to realize that, as viewed from the Moon, the Sun would appear to be setting (or rising) behind the Earth.

The amount of refracted light depends on the amount of dust or clouds in the atmosphere; this also controls how much light is scattered. In general, the dustier the atmosphere, the more that other wavelengths of light will be removed (compared to red light), leaving the resulting light a deeper red color. This causes the resulting coppery-red hue of the Moon to vary from one eclipse to the next. Volcanoes are notable for expelling large quantities of dust into the atmosphere, and a large eruption shortly before an eclipse can have a large effect on the resulting color.



Eclipse cycles

Every year there are at least two lunar eclipses, although total lunar eclipses are significantly less common. If one knows the date and time of an eclipse, it is possible to predict the occurrence of other eclipses using an eclipse cycle like the Saros cycle.


Eclipses of the Sun: 2009 - 2015
Calendar Date Eclipse Type Eclipse Magnitude Central Duration Geographic Region of Eclipse Visibility
(Link to Global Map) (Link to Google Map) (Link to Path Table)
2009 Jan 26 Annular 0.928 07m54s s Africa, Antarctica, se Asia, Australia
[Annular: s Indian, Sumatra, Borneo]
2009 Jul 22 Total 1.080 06m39s e Asia, Pacific Ocean, Hawaii
[Total: India, Nepal, China, c Pacific]
2010 Jan 15 Annular 0.919 11m08s Africa, Asia
[Annular: c Africa, India, Malymar, China]
2010 Jul 11 Total 1.058 05m20s s S. America
[Total: s Pacific, Easter Is., Chile, Argentina]
2011 Jan 04 Partial 0.858 - Europe, Africa, c Asia
2011 Jun 01 Partial 0.601 - e Asia, n N. America, Iceland
2011 Jul 01 Partial 0.097 - s Indian Ocean
2011 Nov 25 Partial 0.905 - s Africa, Antarctica, Tasmania, N.Z.
2012 May 20 Annular 0.944 05m46s Asia, Pacific, N. America
[Annular: China, Japan, Pacific, w U.S.]
2012 Nov 13 Total 1.050 04m02s Australia, N.Z., s Pacific, s S. America
[Total: n Australia, s Pacific]
2013 May 10 Annular 0.954 06m03s Australia, N.Z., c Pacific
[Annular: n Australia, Solomon Is., c Pacific]
2013 Nov 03 Hybrid 1.016 01m40s e Americas, s Europe, Africa
[Hybid: Atlantic, c Africa]
2014 Apr 29 Annular 0.987 - s Indian, Australia, Antarctica
[Annular: Antarctica]
2014 Oct 23 Partial 0.811 - n Pacific, N. America
2015 Mar 20 Total 1.045 02m47s Iceland, Europe, n Africa, n Asia
[Total: n Atlantic, Faeroe Is, Svalbard]
2015 Sep 13 Partial 0.787 - s Africa, s Indian, Antarctica

No comments:

Post a Comment